Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests.

Identifieur interne : 000054 ( Main/Exploration ); précédent : 000053; suivant : 000055

Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests.

Auteurs : Jara Domínguez-Begines [Espagne] ; José M. Ávila [Espagne] ; Luis V. García [Espagne] ; Lorena G Mez-Aparicio [Espagne]

Source :

RBID : pubmed:32012277

Abstract

Emergent diseases are an increasing problem in forests worldwide. Exotic pathogens are now threatening forests where pathogens have not traditionally been considered to be major ecological drivers of tree demography, such as water-limited Mediterranean forests. However, how pathogens might limit regeneration in invaded forests is largely unknown. Here we used fungicide to analyse the impact of soil-borne oomycete pathogens on seedling establishment at community level in Mediterranean forests invaded by the exotic oomycete Phytophthora cinnamomi. Fungicide effects were modelled as a function of the tree neighbourhood composition, the seed mass of the target species, and the abiotic environment. Fungicide application had positive effects on seedling performance that varied in magnitude and spatial structure among coexisting species. Seed mass predicted fungicide effects on seedling emergence, but not on survival or growth. Positive fungicide effects were modulated by levels of abiotic resources, mainly water, increasing with soil moisture. Our results support a novel role for soil-borne oomycete pathogens as one more axis of the regeneration niche of woody species in water-limited forests. Given the increasing numbers of exotic oomycete pathogens worldwide, more research is needed to understand the role of this relevant microbial group as a factor shaping seedling establishment.

DOI: 10.1111/nph.16467
PubMed: 32012277


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests.</title>
<author>
<name sortKey="Dominguez Begines, Jara" sort="Dominguez Begines, Jara" uniqKey="Dominguez Begines J" first="Jara" last="Domínguez-Begines">Jara Domínguez-Begines</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avila, Jose M" sort="Avila, Jose M" uniqKey="Avila J" first="José M" last="Ávila">José M. Ávila</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Luis V" sort="Garcia, Luis V" uniqKey="Garcia L" first="Luis V" last="García">Luis V. García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="G Mez Aparicio, Lorena" sort="G Mez Aparicio, Lorena" uniqKey="G Mez Aparicio L" first="Lorena" last="G Mez-Aparicio">Lorena G Mez-Aparicio</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32012277</idno>
<idno type="pmid">32012277</idno>
<idno type="doi">10.1111/nph.16467</idno>
<idno type="wicri:Area/Main/Corpus">000285</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000285</idno>
<idno type="wicri:Area/Main/Curation">000285</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000285</idno>
<idno type="wicri:Area/Main/Exploration">000285</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests.</title>
<author>
<name sortKey="Dominguez Begines, Jara" sort="Dominguez Begines, Jara" uniqKey="Dominguez Begines J" first="Jara" last="Domínguez-Begines">Jara Domínguez-Begines</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avila, Jose M" sort="Avila, Jose M" uniqKey="Avila J" first="José M" last="Ávila">José M. Ávila</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Luis V" sort="Garcia, Luis V" uniqKey="Garcia L" first="Luis V" last="García">Luis V. García</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="G Mez Aparicio, Lorena" sort="G Mez Aparicio, Lorena" uniqKey="G Mez Aparicio L" first="Lorena" last="G Mez-Aparicio">Lorena G Mez-Aparicio</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla</wicri:regionArea>
<wicri:noRegion>Sevilla</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Emergent diseases are an increasing problem in forests worldwide. Exotic pathogens are now threatening forests where pathogens have not traditionally been considered to be major ecological drivers of tree demography, such as water-limited Mediterranean forests. However, how pathogens might limit regeneration in invaded forests is largely unknown. Here we used fungicide to analyse the impact of soil-borne oomycete pathogens on seedling establishment at community level in Mediterranean forests invaded by the exotic oomycete Phytophthora cinnamomi. Fungicide effects were modelled as a function of the tree neighbourhood composition, the seed mass of the target species, and the abiotic environment. Fungicide application had positive effects on seedling performance that varied in magnitude and spatial structure among coexisting species. Seed mass predicted fungicide effects on seedling emergence, but not on survival or growth. Positive fungicide effects were modulated by levels of abiotic resources, mainly water, increasing with soil moisture. Our results support a novel role for soil-borne oomycete pathogens as one more axis of the regeneration niche of woody species in water-limited forests. Given the increasing numbers of exotic oomycete pathogens worldwide, more research is needed to understand the role of this relevant microbial group as a factor shaping seedling establishment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32012277</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>227</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests.</ArticleTitle>
<Pagination>
<MedlinePgn>588-600</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16467</ELocationID>
<Abstract>
<AbstractText>Emergent diseases are an increasing problem in forests worldwide. Exotic pathogens are now threatening forests where pathogens have not traditionally been considered to be major ecological drivers of tree demography, such as water-limited Mediterranean forests. However, how pathogens might limit regeneration in invaded forests is largely unknown. Here we used fungicide to analyse the impact of soil-borne oomycete pathogens on seedling establishment at community level in Mediterranean forests invaded by the exotic oomycete Phytophthora cinnamomi. Fungicide effects were modelled as a function of the tree neighbourhood composition, the seed mass of the target species, and the abiotic environment. Fungicide application had positive effects on seedling performance that varied in magnitude and spatial structure among coexisting species. Seed mass predicted fungicide effects on seedling emergence, but not on survival or growth. Positive fungicide effects were modulated by levels of abiotic resources, mainly water, increasing with soil moisture. Our results support a novel role for soil-borne oomycete pathogens as one more axis of the regeneration niche of woody species in water-limited forests. Given the increasing numbers of exotic oomycete pathogens worldwide, more research is needed to understand the role of this relevant microbial group as a factor shaping seedling establishment.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Domínguez-Begines</LastName>
<ForeName>Jara</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-9406-1813</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ávila</LastName>
<ForeName>José M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">0000-0002-7075-7450</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>García</LastName>
<ForeName>Luis V</ForeName>
<Initials>LV</Initials>
<Identifier Source="ORCID">0000-0002-5514-2941</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gómez-Aparicio</LastName>
<ForeName>Lorena</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0001-5122-3579</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, LINC Global, Avenida Reina Mercedes 10, 41012, Sevilla, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>New Phytol. 2020 Jul;227(2):283-285</RefSource>
<PMID Version="1">32386332</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Phytophthora cinnamomi </Keyword>
<Keyword MajorTopicYN="Y">Mediterranean mixed forests</Keyword>
<Keyword MajorTopicYN="Y">exotic pathogens</Keyword>
<Keyword MajorTopicYN="Y">neighbourhood models</Keyword>
<Keyword MajorTopicYN="Y">oak decline</Keyword>
<Keyword MajorTopicYN="Y">oomycete</Keyword>
<Keyword MajorTopicYN="Y">plant community</Keyword>
<Keyword MajorTopicYN="Y">seedling establishment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32012277</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16467</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Aronson J, Pereira JS, Pausas JG. 2009. Cork oak woodlands on the edge. Ecology, adaptive management and restoration. Washington, DC, USA: Island Press.</Citation>
</Reference>
<Reference>
<Citation>Augspurger CK, Kelly CK. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211-217.</Citation>
</Reference>
<Reference>
<Citation>Augspurger CK, Wilkinson HT. 2007. Host specificity of pathogenic Pythium species: implications for tree species diversity. Biotropica 39: 702-708.</Citation>
</Reference>
<Reference>
<Citation>Ávila JM, Gallardo A, Ibáñez B, Gómez-Aparicio L. 2016. Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forests. Journal of Ecology 104: 1441-1452.</Citation>
</Reference>
<Reference>
<Citation>Ávila JM, Linares JC, García-Nogales A, Sánchez ME, Gómez-Aparicio L. 2017. Across-scale patterning of plant-soil-pathogen interactions in Quercus suber decline. European Journal of Forest Research 136: 677-688.</Citation>
</Reference>
<Reference>
<Citation>Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT. 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506: 85-88.</Citation>
</Reference>
<Reference>
<Citation>Barton K. 2016. MuMIn: multi-model inference. R package v.1.15.6. [WWW document] URL https://CRAN.R-project.org/package=MuMIn.</Citation>
</Reference>
<Reference>
<Citation>Baskin CC, Baskin JM. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. Orlando, FL, USA: Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed effects models using lme4. Journal of Statistical Software 67: 1-48.</Citation>
</Reference>
<Reference>
<Citation>Bayandala YF, Seiwa K. 2016. Roles of pathogens on replacement of tree seedlings in heterogeneous light environments in a temperate forest: A reciprocal seed sowing experiment. Journal of Ecology 104: 765-772.</Citation>
</Reference>
<Reference>
<Citation>Bergot M, Cloppet E, Pérarnaud V, Déqué M, Marçais B, Desprez-Loustau ML. 2004. Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biology 10: 1539-1552.</Citation>
</Reference>
<Reference>
<Citation>Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M. 2010. Rooting theories of plant community ecology in microbial interactions. Trends in ecology & evolution 25: 468-478.</Citation>
</Reference>
<Reference>
<Citation>Brasier CM. 1992. Oak tree mortality in Iberia. Nature 360: 539.</Citation>
</Reference>
<Reference>
<Citation>Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information- theoretic approach, 2nd edn. Berlin, Germany: Springer.</Citation>
</Reference>
<Reference>
<Citation>Camilo-Alves CSP, da Clara MIE, de Almeida Ribeiro NMC. 2013. Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: A review. European Journal of Forest Research 132: 411-432.</Citation>
</Reference>
<Reference>
<Citation>Canham CD, Uriarte M. 2006. Analysis of neighborhood dynamics of forest ecosystems using likelihood methods and modeling. Ecological applications : a publication of the Ecological Society of America 16: 62-73.</Citation>
</Reference>
<Reference>
<Citation>Catalá S, Berbegal M, Pérez-Sierra A, Abad-Campos P. 2017. Metabarcoding and development of new real-time specific assays reveal Phytophthora species diversity in holm oak forests in eastern Spain. Plant Pathology 66: 115-123.</Citation>
</Reference>
<Reference>
<Citation>Chen SK, Edwards CA, Subler S. 2001. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology and Biochemistry 33: 1971-1980.</Citation>
</Reference>
<Reference>
<Citation>Cohen Y, Coffey MD. 1986. Systemic fungicides and the control of Oomycetes. Annual Review of Phytopathology 24: 311-338.</Citation>
</Reference>
<Reference>
<Citation>Corcobado T, Cubera E, Juárez E, Moreno G, Solla A. 2014. Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agricultural and Forest Meteorology 192-193: 1-8.</Citation>
</Reference>
<Reference>
<Citation>Costa JC, Sánchez A. 2001. Manual para la identificación y reproducción de semillas de especies autóctonas de Andalucía. Sevilla, Spain: Consejería de Medio Ambiente.</Citation>
</Reference>
<Reference>
<Citation>Desprez-Loustau ML, Marcais B, Nageleisen LM, Piou D, Vannini A. 2006. Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63: 597-612.</Citation>
</Reference>
<Reference>
<Citation>Dickie IA, Wakelin AM, Martínez-García LB, Richardson SJ, Makiola A. 2019. Oomycetes along a 120,000 year temperate rainforest ecosystem development chronosequence. Fungal Ecology 39: 192-200.</Citation>
</Reference>
<Reference>
<Citation>Dobson A, Crawley M. 1994. Pathogens and the structure of plant communities. Trends in Ecology and Evolution 9: 393-398.</Citation>
</Reference>
<Reference>
<Citation>Domínguez-Begines J, de Deyn GB, García LV, Eisenhauer N, Gómez-Aparicio L. 2019. Cascading spatial and trophic impacts of oak decline on the soil food web. Journal of Ecology 107: 1199-1214.</Citation>
</Reference>
<Reference>
<Citation>Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1-20.</Citation>
</Reference>
<Reference>
<Citation>Edwards AWF. 1992. Likelihood, 2nd edn. Baltimore, MD, USA: Johns Hopkins University Press.</Citation>
</Reference>
<Reference>
<Citation>Freckleton RP, Lewis OT. 2006. Pathogens, density dependence and the coexistence of tropical trees. Proceedings of the Royal Society 273: 2909-2916.</Citation>
</Reference>
<Reference>
<Citation>Gallery RE, Moore DJP, Dalling JW. 2010. Interspecific variation in susceptibility to fungal pathogens in seeds of 10 tree species in the neotropical genus Cecropia. Journal of Ecology 98: 147-155.</Citation>
</Reference>
<Reference>
<Citation>Garbelotto M, Pautasso M. 2012. Impacts of exotic forest pathogens on Mediterranean ecosystems: four case studies. European Journal of Forest Pathology 133: 101-116.</Citation>
</Reference>
<Reference>
<Citation>García-Fayos P. 2001. Bases ecológicas para la recolección, almacenamiento y germinación de semillas de especies de uso forestal en la Comunidad Valenciana. Valencia, Spain: Conselleria de Medi Ambient, Generalitat Valenciana.</Citation>
</Reference>
<Reference>
<Citation>Ghelardini L, Luchi N, Pecori F, Pepori AL, Danti R, Della Rocca G, Capretti P, Tsopelas P, Santini A. 2017. Ecology of invasive forest pathogens. Biological Invasions 11: 3183-3200.</Citation>
</Reference>
<Reference>
<Citation>Gilbert GS. 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology 40: 13-43.</Citation>
</Reference>
<Reference>
<Citation>Gilbert GS. 2005. The dimensions of plant disease in tropical forests. In: Burslem D, Pinard M, Hartley S eds. Biotic Interactions in the Tropics. Cambridge, UK: Cambridge University Press, 141-164.</Citation>
</Reference>
<Reference>
<Citation>Giorgi F, Lionello P. 2008. Climate change projections for the Mediterranean region. Global and Planetary Change 63: 90-104.</Citation>
</Reference>
<Reference>
<Citation>Goffe WL, Ferrier GD, Rogers J. 1994. Global optimization of statistical functions with simulated annealing. Journal of Econometrics 60: 65-99.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Aparicio L. 2008. Spatial patterns of recruitment in Mediterranean plant species: linking the fate of seeds, seedlings and saplings in heterogeneous landscapes at different scales. Journal of Ecology 96: 1128-1140.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Aparicio L, Domínguez-Begines J, Kardol P, Ávila JM, Ibáñez B, García LV. 2017. Plant-soil feedbacks in declining forests: implications for species coexistence. Ecology 98: 1908-1921.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Aparicio L, Ibáñez B, Serrano MS, De Vita P, Ávila JM, Pérez-Ramos IM, García LV, Sánchez ME, Marañón T. 2012. Spatial patterns of soil pathogens in declining Mediterranean forests: implications for tree species regeneration. New Phytologist 194: 1014-24.</Citation>
</Reference>
<Reference>
<Citation>Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T. 2008. Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117: 1683-1699.</Citation>
</Reference>
<Reference>
<Citation>Hersh MH, Vilgalys R, Clark JS. 2012. Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology 93: 511-520.</Citation>
</Reference>
<Reference>
<Citation>Hewitt N. 1998. Seed size and shade-tolerance: a comparative analysis of North American temperate trees. Oecologia 114: 432-440.</Citation>
</Reference>
<Reference>
<Citation>Homet P, González M, Matías L, Godoy O, Pérez-Ramos IM, García LV, Gómez-Aparicio L. 2019. Exploring interactive effects of climate change and exotic pathogens on Quercus suber performance: damage caused by Phytophthora cinnamomi varies across contrasting scenarios of soil moisture. Agricultural and Forest Meteorology 276-277: 107605.</Citation>
</Reference>
<Reference>
<Citation>Hood LAA, Swaine MDD, Mason PAA. 2004. The influence of spatial patterns of damping-off disease and arbuscular mycorrhizal colonization on tree seedling establishment in Ghanaian tropical forest soil. Journal of Ecology 92: 816-823.</Citation>
</Reference>
<Reference>
<Citation>Ibáñez B, Gómez-Aparicio L, Ávila JM, Pérez-Ramos IM, Marañón T. 2017. Effects of Quercus suber decline on woody plant regeneration: potential implications for successional dynamics in Mediterranean forests. Ecosystems 20: 630-644.</Citation>
</Reference>
<Reference>
<Citation>Ibáñez B, Gómez-Aparicio L, Stoll P, Ávila JM, Pérez-Ramos IM, Marañón T, Pérez-Ramos IM, Marañón T. 2015. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PLoS ONE 10: 1-18.</Citation>
</Reference>
<Reference>
<Citation>IPCC. 2013. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA: Cambridge University Press.</Citation>
</Reference>
<Reference>
<Citation>Jaeger B 2017. r2glmm: computes R squared for mixed (multilevel) models. R package v.0.1.2. [WWW document] https://CRAN.R-project.org/package=r2glmm.</Citation>
</Reference>
<Reference>
<Citation>Jung T, Durán A, Jung MH, Balci Y, Scanu B. 2018. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia 40: 182-220.</Citation>
</Reference>
<Reference>
<Citation>Jung T, Orlikowski L, Henricot B, Abad-Campos P, Aday AG, Aguín Casal O, Bakonyi J, Cacciola SO, Cech T, Chavarriaga D. 2016. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology 46: 134-163.</Citation>
</Reference>
<Reference>
<Citation>Junta de Andalucía. 2017. PORN/PRUG/PDS Parque Natural de los Alcornocales. Sevilla, Spain: Consejería de Medio Ambiente.</Citation>
</Reference>
<Reference>
<Citation>Kardol P, Martijn Bezemer T, van der Putten WH, Bezemer TM. 2006. Temporal variation in plant-soil feedback controls succession. Ecology Letters 9: 1080-1088.</Citation>
</Reference>
<Reference>
<Citation>Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. 2017. Biological invasions in forest ecosystems. Biological Invasions 19: 3437-3458.</Citation>
</Reference>
<Reference>
<Citation>Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M et al. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698-709.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Yu S, Xie ZP, Staehelin C. 2012. Analysis of a negative plant-soil feedback in a subtropical monsoon forest. Journal of Ecology 100: 1019-1028.</Citation>
</Reference>
<Reference>
<Citation>Lowe S, Browne M, Boudjelas S, De Poorter M. 2004. 100 of the World's worst invasive alien species: a selection from the global invasive species database. Auckland, New Zealand: The Invasive Species Specialist Group, World Conservation Union (IUCN).</Citation>
</Reference>
<Reference>
<Citation>Marañón T, Ibáñez B, Anaya-Romero M, Muñoz-Rojas M, Pérez-Ramos I. 2012. Oak trees and woodlands providing ecosystem services in Southern Spain. In: Rotherham ID, Handley C, Rotherham ID, Handley C, Agnoletti M, Samojik T, eds. Trees beyond the Wood. An exploration of concepts of woods, forests and trees. Sheffield, UK: Wildtrack Publishing, 369-378.</Citation>
</Reference>
<Reference>
<Citation>Maron JL, Marler M, Klironomos JN, Cleveland CC. 2011. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters 14: 36-41.</Citation>
</Reference>
<Reference>
<Citation>Maron JL, Waller LP, Hahn MA, Diaconu A, Pal RW, Müller-Schärer H, Klironomos JN, Callaway RM. 2013. Effects of soil fungi, disturbance and propagule pressure on exotic plant recruitment and establishment at home and abroad. Journal of Ecology 101: 924-932.</Citation>
</Reference>
<Reference>
<Citation>Martin FN, Loper JE. 1999. Soilborne plant diseases caused by Pythium spp: ecology, epidemiology, and prospects for biological control. Critical Reviews in Plant Sciences 18: 111-181.</Citation>
</Reference>
<Reference>
<Citation>McCarthy-Neumann S, Ibáñez I. 2013. Plant-soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. Ecology 94: 780-786.</Citation>
</Reference>
<Reference>
<Citation>McCarthy-Neumann S, Kobe RK. 2008. Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology 89: 1883-92.</Citation>
</Reference>
<Reference>
<Citation>Médail F, Quézel P. 1997. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden 84: 112-127.</Citation>
</Reference>
<Reference>
<Citation>Moralejo E, García-Muñoz JA, Descals E. 2009. Susceptibility of Iberian trees to Phytophthora ramorum and P. cinnamomi. Plant Pathology 58: 271-283.</Citation>
</Reference>
<Reference>
<Citation>Mora-Sala B, Berbegal M, Abad-Campos P. 2018. The use of qPCR reveals a high frequency of Phytophthora quercina in two Spanish holm oak areas. Forests 9: 679.</Citation>
</Reference>
<Reference>
<Citation>Mordecai E. 2011. Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecological Monographs 81: 429-441.</Citation>
</Reference>
<Reference>
<Citation>Moreira AC, Martins JMS. 2005. Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. Forest Pathology 35: 145-162.</Citation>
</Reference>
<Reference>
<Citation>Moricca S, Linaldeddu B, Ginetti B, Scanu B, Franceschini A, Ragazzi A. 2016. Emdemic and emerging pathogens threatening Cork oak trees: management options for conserving a unique forest ecosystem. Plant Disease 100: 2184-2193.</Citation>
</Reference>
<Reference>
<Citation>Murphy L. 2012. Likelihood: Methods for maximum likelihood estimation. R package v.1.5. [WWW document] URL http://CRAN.R-project.org/package=likelihood.</Citation>
</Reference>
<Reference>
<Citation>Ojeda F, Marañón T, Arroyo J. 2000. Plant diversity patterns in the Aljibe Mountains (S. Spain): a comprehensive account. Biodiversity and conservation 9: 1323-1343.</Citation>
</Reference>
<Reference>
<Citation>Pérez-Ramos IM, Marañón T. 2012. Community-level seedling dynamics in Mediterranean forests: uncoupling between the canopy and the seedling layers. Journal of Vegetation Science 23: 526-540.</Citation>
</Reference>
<Reference>
<Citation>Pérez-Sierra AM, Mora-Sala B, León-Santana M, García-Jiménez J, Abad-Campos P. 2012. Enfermedades causadas por Phytophthora en viveros de plantas ornamentales. Boletín de Sanidad Vegetal - Plagas 38: 143-156.</Citation>
</Reference>
<Reference>
<Citation>Pizano C, Mangan SA, Graham JH, Kitajima K. 2014. Habitat-specific positive and negative effects of soil biota on seedling growth in a fragmented tropical montane landscape. Oikos 123: 846-856.</Citation>
</Reference>
<Reference>
<Citation>R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing [WWW document] URL http://www.R-project.org/.</Citation>
</Reference>
<Reference>
<Citation>Reich PB, Wright IJ, Cavender-Bares J, Craine M, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: traits, spectra and strategies. International Journal of Plant Sciences 164: S143-S164.</Citation>
</Reference>
<Reference>
<Citation>Rizzo DM, Garbelotto M, Hansen EM. 2005. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annual Review of Phytopathology 43: 309-335.</Citation>
</Reference>
<Reference>
<Citation>Robertson GI. 1970. Susceptibility of exotic and indigenous trees and shrubs to Phytophthora cinnamomi rands. New Zealand Journal of Agricultural Research 13: 297-307.</Citation>
</Reference>
<Reference>
<Citation>Robin C, Capron G, Desprez-Loustau ML. 2001. Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathology 50: 708-716.</Citation>
</Reference>
<Reference>
<Citation>Ruiz-Gómez FJ, Navarro-Cerrillo RM, Pérez-de-Luque A, Oβwald W, Vannini A, Morales-Rodríguez C. 2019. Assessment of functional and structural changes of soil fungal and oomycete communities in holm oak declined dehesas through metabarcoding analysis. Scientific Reports 9: 5315.</Citation>
</Reference>
<Reference>
<Citation>Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T et al. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist 197: 238-250.</Citation>
</Reference>
<Reference>
<Citation>Schafer M, Kotanen PM. 2003. The influence of soil moisture on losses of buried seeds to fungi. Acta Oecologica 24: 255-263.</Citation>
</Reference>
<Reference>
<Citation>Schwinn FJ, Staub T. 1987. Phenylamides and other fungicides against oomycetes. In: Lyr H, ed. Modern selective fungicides properties, application, mechanisms of action. London, UK: Longman, 260-273.</Citation>
</Reference>
<Reference>
<Citation>Sena K, Crocker E, Vincelli P, Barton C. 2018. Phytophthora cinnamomi as a driver of forest change: implications for conservation and management. Forest Ecology and Management 409: 799-807.</Citation>
</Reference>
<Reference>
<Citation>Smith CC, Fretwell SD. 1974. The optimal balance between size and number of offspring. American Naturalist 108: 499-506.</Citation>
</Reference>
<Reference>
<Citation>Spear ER, Coley PD, Kursar TA. 2015. Do pathogens limit the distributions of tropical trees across a rainfall gradient? Journal of Ecology 103: 165-174.</Citation>
</Reference>
<Reference>
<Citation>Sukul P, Spiteller M. 2000. Metalaxyl: persistence, degradation, metabolism, and analytical methods. Reviews of Environmental Contamination and Toxicology 164: 1-26.</Citation>
</Reference>
<Reference>
<Citation>Swinfield T, Lewis OT, Bagchi R, Freckleton RP. 2012. Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecology and Evolution 2: 1408-1413.</Citation>
</Reference>
<Reference>
<Citation>Thompson S, Álvarez-Loayza P, Terborgh JW, Katul G. 2010. The effects of plant pathogens on tree recruitment in the Western Amazon under a projected future climate: a dynamical systems analysis. Journal of Ecology 98: 1434-1446.</Citation>
</Reference>
<Reference>
<Citation>Urbieta IR, Pérez-Ramos IM, Zavala MA, Marañón T, Kobe RK. 2008. Soil water content and emergence time control seedling establishment in three co-occurring Mediterranean oak species. Canadian Journal of Forest Research 38: 2382-2393.</Citation>
</Reference>
<Reference>
<Citation>Valladares F, Laanisto L, Niinemets Ü, Zavala MA. 2016. Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology and Diversity 9: 237-251.</Citation>
</Reference>
<Reference>
<Citation>Van der Putten WH, Peters BAM. 1997. How soil-borne pathogens may affect plant competition. Ecology 78: 1785-1795.</Citation>
</Reference>
<Reference>
<Citation>Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.</Citation>
</Reference>
<Reference>
<Citation>Zentmyer GA. 1980. Phytophthora cinnamomi and the disease it causes. Phytopathogical Monograph 10. St Paul, MN, USA: American Phytopathological Society.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Dominguez Begines, Jara" sort="Dominguez Begines, Jara" uniqKey="Dominguez Begines J" first="Jara" last="Domínguez-Begines">Jara Domínguez-Begines</name>
</noRegion>
<name sortKey="Avila, Jose M" sort="Avila, Jose M" uniqKey="Avila J" first="José M" last="Ávila">José M. Ávila</name>
<name sortKey="G Mez Aparicio, Lorena" sort="G Mez Aparicio, Lorena" uniqKey="G Mez Aparicio L" first="Lorena" last="G Mez-Aparicio">Lorena G Mez-Aparicio</name>
<name sortKey="Garcia, Luis V" sort="Garcia, Luis V" uniqKey="Garcia L" first="Luis V" last="García">Luis V. García</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32012277
   |texte=   Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32012277" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024